

The Human Body as an Interactive Computing Platform Chris Harrison

SCR-300

1943

Carnegie Mellon **Motorola DynaTAC 8000x** 1983

Apple iPod Touch

2007

»Computing power

»Computing power

»Storage

- »Computing power
- »Storage
- »Bandwidth

- »Computing power
- »Storage
- »Bandwidth
- »Screen Resolution
- » ...

Why not this?

»Finger size

- »Finger size
- »Visual acuity

- »Finger size
- »Visual acuity
- » Manual dexterity
- »...

Mobile Device Size

Size

Mobile Device Size

Size

Touchscreen

Button

Input Richness

x Input Area

Input Power

TapSense

UIST 2011

Chris Harrison

Julia Schwarz

Scott Hudson

Shear Inout

CHI 2012

Chris Harrison Scott Hudson

CHI 2010

Julia Schwarz Chris Harrison Jennifer Mankoff Scott Hudson

Abracadabra

UIST 2009

Chris Harrison Scott Hudson

Scratch Input

UIST 2008

Chris Harrison Scott Hudson

The Human Body as an Interactive Computing Platform

- Goes where we go
- Always-available input [Tan 2010, Saponas 2009]
- Skin is the largest organ
 - Two square meters of surface area
 - Hand alone offers more surface area than a smartphone
- Kinesthetic senses
 - Rapidly and accurately position our body
 - Fine tuned muscle memory, hand eye coordination
 - Eyes free interaction

Skindut

CHI 2010

Chris Harrison Desney Tan

Dan Morris

Acoustic Sensing

- Enhanced transmission through solids/liquids
 - Longer transmission distances
 - Better preservation of signal (high SNR)
- Intra-object acoustics less prone to outside interference
- Allows surfaces to be appropriated
 - Remote, indirect sensing
 - Without permanent instrumentation

Taps on the Body

- Input is by tapping on body, like touchscreen
- Taps on body create unique acoustic signatures
- Signature affected by:
 - Density of tissues
 - Anatomical features
 - Joints

Taps on the Body

- Input is by tapping on body, like touchscreen
- Taps on body create unique acoustic signatures
- Signature affected by:
 - Density of tissues
 - Anatomical features
 - Joints

Acoustics on the Body

Longitudinal (compression) waves

Acoustics on the Body

Transverse surface distortions (ripples)

Sensing

- Cantilevered mass on piezo film
 - Mass alters resonant frequency
 - Resonant frequency amplifies energy
 - Natural band pass filter
- We use 10 sensing elements
 - In two arrays of five
 - Acoustic spectrum from 25 to 78 Hz
- Constructed prototype Armband

Segmentation and Processing

- Sensors provide high level of noise suppression
 - Segment using fixed thresholds on the exponential average
- Sensors provide acoustic information in different bands
 - Derive band ratios, frequency distributions, other features
- Train SVM classifier; use to determine location of tap Witten '05]
- Bind functions to different locations

Experiment

- 13 Participants (7 female)
- Age ranged from 20 to 56 (mean 38)
- BMI ranged from 20.5 (normal) to 31.9 (obese)
- Three input location sets
 - Fingers (5 locations)
 - Whole arm (5 locations)
 - Forearm (10 locations)

Procedure

- Users provided 3 rounds of example input
 - 10 taps to each input location
 - Next round started after all locations were tapped

- Accuracy evaluated:
 - Presented users a simple text stimuli (e.g., "tap your wrist")
 - Each input location appeared 10 times, random order
 - Live segmentation and classification accuracy

Fingers (5 locations)

- We have exceptional dexterity with our fingers
- Discrete and named (e.g., thumb, ring)
- Linearly ordered
- Downside: Hard to sense

- Mean accuracy: 87.7% (SD=10.0%)
- Segmentation accuracy: ~100%

Fingers (5 locations)

- We have exceptional dexterity with our fingers
- Discrete and named (e.g., thumb, ring)
- Linearly ordered
- Downside: Hard to sense

- Mean accuracy: 87.7% (SD=10.0%)
- Segmentation accuracy: ~100%

Whole Arm (5 locations)

- Discrete and well named (e.g., wrist, palm)
- Acoustically unique

- Mean accuracy: 95.5% (SD=5.1%)
- Eyes-free mean accuracy: 85.0% (SD=9.4%)

Whole Arm (5 locations)

Below-elbow mean accuracy:

95.5% (SD=5.1%)

Above-elbow mean accuracy:

88.3% (SD=7.8%)

%

SENSOR

Forearm (10 locations)

- Attempt to tax system accuracy
- Used stickers instead of names
- Two training rounds (due to time)
- Mean accuracy: 81.5% (SD=10.5%)

Forearm Groupings & Accuracies

Walking and Jogging

- Male participant
 - 2.3 mph walking
 - 4.3 mph jogging
- Female participant
 - 1.9 mph walking
 - 3.9 mph jogging
- Three Input locations:
 - Arm | Wrist | Palm
 - Provided 10 input examples per location while walking/jogging

Walking and Jogging

Walking

- No false positive inputs
- 100% true positive segmentation
- Mean classification accuracy 93.4%

Jogging

- Four false positives (over six minutes)
- 100% true positive segmentation
- Mean classification accuracy 71.7%

Omnitouch

UIST 2011

Chris Harrison

Hrvoje Benko

Andy Wilson

FPS: 29.95

Identifying Surfaces

- Find candidate surfaces for projection
- 3D connected components
- Compute real world size
 - Surfaces smaller than a hand are discarded
- Compute surface X/Y/Z position and orientation

Identifying Surfaces

Depth Map

3D Connected Components

Projected Interfaces

- Compositing interfaces in virtual 3D scene
 - Treat interfaces as planes in 3D space
 - Treat projector like a virtual camera; project viewport image
 - Scaling, z-ordering, perspective transformation, etc. comes for free
 - Ray cast fingers as input points onto active interfaces
- Requires projector/camera calibration
 - Convert 3D spatial coordinates to 2D projected points [DeMenthon '95, Wilson '10]
- Interfaces can be authored in real-world units and coordinates

Defining Interactive Areas

- Projected interfaces
 - Where to center?
 - How tall/wide?
- Approaches
 - One-size fits all
 - Classification driven
 - User defined

Evaluation

- 12 Participants (6 female)
- Targets (3x3 pattern); random order
- 4 Surfaces (hand, arm, pad, wall)
- 3 Distances (hand, pad conditions)
- 6048 "Clicks" collected

"Click" Precision

[Holz and Baudisch '10]

"Click" Precision

[Holz and Baudisch '10]

"Click" Precision

[Holz and Baudisch '10]

"Click" Detection

Of our 6048 crosshair "click" trials:

96.5% correctly had one click event

0.8% had no click event (i.e., system missed click)

2.5% had two click events

0.1% had three click events

With a 500ms timeout click rejection:

98.9% click detection accuracy

- No significant difference in X, Y, 1D, 2D trials
- Mean deviation of 6.3mm (mean SD=3.9mm)

Armura

TEI 2012

Chris Harrison Shilpa Ramamurthy

Scott Hudson

Interface Design

Interface Design

Menuing (gestures + position)

Next steps

- What are ideal on-body surfaces?
- Friends/strangers using on-body interfaces?
- How do users feel about projected Interfaces?
- Where is it appropriate to touch own body?
- Where should interfaces be located?
- How should they be laid out?

Next steps

Thank You

Chris Harrison

chris.harrison@cs.cmu.edu www.chrisharrison.net

This work was supported in part by a Microsoft Research Ph.D. Fellowship and grants from the Intel Research Council, General Motors, the National Science Foundation under grants IIS-0713509. IIS-0803733, and IIS-0840766, and finally, the Center for Future Work, Heinz College, Carnegie Mellon University.